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Abstract

A good domain name can help a company rapidly increase their brand aware-

ness, attract more visitors, and therefore obtain more customers. Due to the

exponential increase in the number of domain names, registrants are often frus-

trated because their preferred domain names are already taken. In order to en-

hance registrants’ satisfaction and efficiency, as well as to increase the revenue of

registrars (e.g. GoDaddy, Yahoo, Squarespace), it is important to suggest alter-

native domain names that are available. The first step is to detect registrants’

needs by classifying the attempted domain name to one of the categories.

This study is the first that defines the problem of domain name classification,

which classifies a registrant’s preferred domain name into pre-defined categories.

The paper proposes deep neural networks with subword embeddings that are

built in multiple strategies. We build embeddings for character n-grams of a

domain name by learning from training data, learning from external corpus, or

learning from external corpus and adjusting based on training data. The exper-

iments show that the proposed methods significantly outperform the baselines.

Keywords: Domain Names, Text Classification, WWW, Internet,

E-Commerce
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1. Introduction

Domain names have been at the forefront of the digital experience for decades.

They provide the real estate for businesses to build their online presence and

provide doorways for their customers to find them [1]. An eye-catching and

memorable domain name adds credibility to the business and increases aware-5

ness of the brand. Thus, selecting and buying a good domain name can be the

first step in attracting website visitors, generating traffic to the website, and

building a reputation, which, in turn, will result in more customers and better

sales.

Indeed, the domain name industry is a billion-dollar industry because of the10

competitiveness involved in securing the perfect domain name. Stories abound

of domains that were purchased for $8 dollars 15 years ago being sold today

for millions [2]. According to a report made by VeriSign 1, the first quar-

ter of 2018 closed with approximately 333.8 million domain name registrations

across all Top-Level Domains (TLDs), an increase of approximately 1.4 million15

domain name registrations, or 0.4 percent, compared to the fourth quarter of

2017. Domain name registrations have grown by approximately 3.2 million,

or 1.0 percent, year over year [3]. In the current business ecosystem, domain

name registrants submit their preferred domain names to registrars, such as

GoDaddy 2, Yahoo 3, or Squarespace 4. If the domain names are available, the20

registrants can register by paying the fee to the registrars.

With the explosive growth in the number of domain names, preferred domain

names are often already registered. According to a white paper [4] published

by Verisign, which runs the .com and .net namespaces, the third quarter of

1VeriSign, Inc. is operating two of the Internet’s thirteen root nameservers, the author-

itative registry for the .com, .net, and .name generic top-level domains and the .cc and .tv

country-code top-level domains, and the back-end systems for the .jobs, .gov, and .edu top-

level domains.
2https://www.godaddy.com
3https://www.yahoosmallbusiness.com/order/domains
4www.squarespace.com/Domain-Names
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2019 closed with 359.8 million domain name registrations across all top-level25

domains (TLDs), an increase of 5.1 million domain name registrations, or 1.4%,

compared to the second quarter of 2019. Domain name registrations have grown

by 17.4 million, or 5.1%, year over year. With the boost of the number of domain

names, concerns have been raised that registering domain names gets increas-

ingly difficult [5]: According to [6], all of the good .com domains were taken and30

that 99% of all registrar searches today result in a “domain taken” page. Many

well-known brands have encountered challenges securing their preferred domain

names. For example, Google renamed their parent company “Alphabet,” but it

does not own alphabet.com - BMW does. In 2014, Microsoft spent $2.5 billion

to acquire Mojang, the Swedish company behind the popular Minecraft video35

game, but it did not get the domain name minecraft.com with it - that belongs

to an Australia mining-engineering company. [7]

In the cases that the preferred domain names are not available, to assist the

registrant to find an available name quickly and easily, registrars recommend

alternatives that have not been taken yet, by adding a prefix and/or suffix,40

editing words, and/or changing the TLD of the original requested domain name.

Figures 1 and 2 are two example responses from GoDaddy and Yahoo, in which

minecraft.com is submitted as the preferred domain name. Since the domain

name is not available, the two domain name recommendation systems edit the

submitted domain name using general and popular words, e.g., “job”, “art”,45

“rental”, “photograph”, which do not seem relevant to the query. In such case,

the registrant has to come up a new domain name again himself or even stop

searching.

To generate highly relevant recommendations, registrars must well under-

stand the needs of registrants by analyzing the preferred domain names. To50

understand a domain name query for further transforming it, one intuitive way

is to classify it into one of the pre-specified topical categories, such as business,

sports or arts. The outcome can be used for downstream processors to make the

preferred domain names available: For example, a set of modifiers pre-defined

in the category can be used to transform the domain name. For instance,55
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Figure 1: GoDaddy’s Domain Name Recommendation

a good classifier correctly assigns minecraft.com into the “Games” category.

Possible modifiers alter this unavailable domain name into minecraftgame.com,

minecraftapp.com, and addictingminecraft.com, which have not been taken.

These modifiers can be created either manually or statistically based on co-

occurrence or similarities [8, 9, 10]. Therefore, as the first step, topical classi-60

fication significantly impact the performance of the domain name recommen-

dation. The risk of mis-classification can be hedged by showing new domain

names from all of the top possible categories. In this case, registrants can find

good and available domain names in the top part of the list. Therefore, a do-

main name recommendation powered by domain name classification may reduce65

registrants’ efforts and thus boost domain name purchase.

However, accurate topical classification of domain names is highly challeng-

ing for several reasons. First of all, when a domain name is requested, the

actual website is not available yet. Thus, the meta-data of the website, such

as description, traffic, and registration information, are not available. The only70

information that can be utilized is the requested domain name itself. Second,

domain names are extremely short, and thus are ambiguous in nature. Since

shorter domain names are more memorable to customers, domain names are
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Figure 2: Yahoo’s Domain Name Recommendation

designed to be as concise as possible: most domain names have only 1-3 tokens

(after word segmentation), making it challenging to identify the meaning. For75

example, it is hard to tell whether desktopsolutions.net is a website selling

desktop furniture or providing IT services. Third, domain names usually contain

noise. For example, in redpoint-design.com (a web design and marketing web-

site named “red point”), “red” and “point” are not related to the website topic -

only “design” is. Fourth, word segmentation of domain name may introduce er-80

rors, increasing the classification difficulty. For example, the root domain part of

minecraft.com may be segmented to “mine” and “craft”. Finally, some domain

names are almost impossible to understand, e.g., abcdefg.com, 843625.org, or

carlwang.net. These domain names do not contain valid or meaningful English

words. To the best of the knowledge, there is no existing study that attempts to85

understand the topics of domain names. The industry is still looking for good

solutions.

To accurately classify domain names, we propose utilizing the subword (i.e.,

character n-grams) information of the domain names. With well-represented
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subword semantics, we propose deep neural network-based models. In particu-90

lar, the input of the models is a domain name which is segmented into tokens.

The subword information of each token is modeled by latent vectors (i.e., em-

beddings). The subword embeddings are aggregated to represent the semantic

of each token. Fed with token semantic representations, domain name seman-

tic representation, and the TLD, a Recurrent Neural Network (RNN) [11] and95

a Convolutional Neural Network (CNN) [12] are adopted to predict the cat-

egory label, respectively. The output is the predicted category of the input

domain name. In the experiments, we evaluate the proposed methods and com-

pare three different methods of building subword embeddings. The experiment

results show that the CNN, with frozen embeddings learned from Wikipedia,100

obtains the best performance in both classification and ranking tasks.

With our models, to make recommendation based on these domain names,

in practice, a recommender system can rank the possible categories of a user-

submitted domain name by the predicted probabilities. The recommendation

list can include recommended domain names from all of the first several highest105

categories. For example, the predicted probability distribution of “desktopsolu-

tions.com” is 60% for Computer and 40% for Home. Modifiers in both categories

alter this unavailable domain name into a list of available domain names. These

new domain names can be ranked by the product of the confidences of each

modifier and the predicted classification probabilities. Hence, the recommen-110

dation result can consist of new domain names from both categories. Those

from the Computer category might be ranked higher than those from the Home

category.

This work will benefit both users and firms on the sell side of the domain

name registration. Users can receive more relevant alternative domain names.115

The firms can obtain more revenue by selling more domain names. In addition,

the proposed method can also be applied in phishing website detection (given

the assumption that whether a website can be malicious can be partially told

by its domain name). Being fed by a large scale of labeled data on phishing de-

tection, the proposed model can classify domains into one of the two categories:120
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Malicious or Benign.

The contributions of our paper are as follows: 1) We define a new research

problem, topical classification of domain names. It can significantly benefit

domain name recommendation, currently a billion-dollar industry: A user-

submitted domain name is classified by its topic. A set of domain modifiers125

specific to each category can be then triggered to alter the original domain

name. As a result, a topical classifier of domain names can suggest available

domains that users may would like to purchase. A good solution may reduce

users’ effort to find available domains and boost domain name registrars’ rev-

enue. 2) Due to the polymorphism and noisiness in domain names, we propose130

to use character-level RNN-based and CNN-based models, which have been used

in text classification tasks. To better capture the semantics of domain names,

we propose to compute abstract representations for both the domain names to-

kens and the entire domains. 3) We evaluate our models on a publicly available

dataset. The results show that our models significantly outperform the base-135

lines. 4) Besides domain name recommendation, the proposed method can also

benefit other fields, such as Internet security, in which malicious websites can

be detected from the links and domains.

The rest of the paper is organized as follows: Section 2 compares against

related work, Section 3 introduces the problem definition, Section 4 presents the140

proposed methods, Section 5 shows extensive experimental results, and Section 6

concludes the paper.

2. Related Work

2.1. Topical Classification of URLs

To the best of our knowledge, none of the existing work focuses on topical145

classification of domain names. Several existing studies attempted to classify

Uniform Resource Locators (URLs) into categories in two main applications.

One of the main applications of URL classification is to detect malicious

or phishing websites based on their URLs without accessing the content of
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Web sites. Thus, it eliminates the run-time latency and the possibility of ex-150

posing users to the browser-based vulnerabilities. The work [13, 14] describes

approaches to this problem based on automated URL classification, using sta-

tistical methods to discover the lexical, site popularity features, and host-based

properties of malicious Web site URLs. Le et al. [15] try to discover phish-

ing websites that steal personal user information and pretend to be legitimate.155

The authors automatically select lexical features and hand-select obfuscation-

resistant features. They also utilize external feature collections, e.g., WHOIS

and Team Cymru, in order to get registration information, the network informa-

tion, and the geo-location of each URL. Huang et al. [16] conduct a bottom-up

search method and a greedy selection algorithm that iteratively discover pat-160

terns in the malicious URLs. Saxe et al. [17] propose a character-level Convo-

lutional Neural Network with embeddings to detect malicious URLs, file paths,

and registry keys. They build one embedding for each character and then stack

CNN layers on top of the embedding layer. The output is whether a URL is

benign or malicious.165

The other application is identifying the topic of a webpage merely based on

its URL. Baykan et al. and Rajalakshmi et al. [18, 19, 20] extract textual

features from a given URL: tokens, n-grams from tokens, n-grams from URL,

and/or n-grams with positions. A classifier, e.g., Support Vector Machines or

Language Model, is built by feeding it the features of training URLs. Hernandez170

et al. [21] classify web pages based on URLs in an unsupervised way. The

proposed algorithm takes the URL of a web page with a keyword-based search

form as input, and outputs a set of patterns that represent the URLs of pages

that belong to the same class.

In contrast to the existing work of URL classification, domain name classi-175

fication has several characteristics as following:

• Compared to a domain name, which is a just part of a URL, a URL

contains more information about a web page: A URL has more text in

the sub-directory part (refer to Figure 3). The sub-directory part of a web
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page usually contains the title and/or topical channel of the web page.180

Conversely, domain names are much shorter than URLs. According to

the statistics from our dataset, most domains contain 2 to 3 word tokens.

It is highly challenging to identify the web page topic. Traditional lexical

features [18, 19, 20, 13, 14], including n-grams and tokens, may not work

well due to much higher sparsity.185

• URLs have significant patterns, especially URLs under the same web

site. For example, a web page about news may follow patterns, like

www.forbes.com/sites/<authorname>/<date>/ [16, 21]. These patterns

can be revealed and utilized for classification. However, it is impossible

to discover patterns from domain names. Since domain names cannot be190

duplicated, a desired but unavailable domain name has to be transformed

(includes swapping, replacement, interpolation, and deletion) arbitrarily

in order to be registered. Hence, common patterns may not exist within

domain names in the same category.

• In the application of domain name recommendation, users submit the195

domain names that they want to register. Since the web sites with the

domain names do not exist yet, external domain name features utilized

in [15] (e.g., popularity, registration, geo-location, and network informa-

tion) are not available. Thus, the domain name itself is the only input

that can be used for classification.200

2.2. Deep Neural Networks for Text Classification

Extensive studies have proposed to applied deep neural networks to solve

natural language processing problem. Based on how the input words are pro-

cessed, existing studies can be categorized in three groups: word-level, character-

level, and hybrid.205

Kim et al. [22] proposed a simple CNN with little hyper-parameter tun-

ing and static word embeddings achieves excellent results on multiple bench-

marks. Instead of using a word-level CNN, Dos Santos et al. [23] proposed a

9
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character-level CNN that learns character-level embeddings which were used to

compute word-level and sentence-level representation. They stated that using210

character-level embedding can save more memory and handle out-of-vocabulary

words. To further take word order into account, Johnson et al. [24] studied

CNN on text categorization to exploit the word order of text data for accu-

rate prediction. There are also some studies attempted to use both word-level

and character-level representations. For example, Santos et al. [25] proposed a215

deep neural network that can learn character-level representation of words and

associate them with usual word representations to perform POS tagging. To en-

able transfer learning, Severyn et al. [26] used an unsupervised neural language

model to train initial word embeddings that were further tuned by the proposed

CNN model. Tang et al. [11, 27] introduced a RNN based model to learn vector-220

based document representation in a unified, bottom-up fashion. They learned

word embeddings directly from the training data for sentiment classification.

On the other hand, for character-level embeddings, Zhang et al. [28, 29] offered

an empirical exploration on the use of character-level convolutional networks

(ConvNets) for text classification. They showed that character-level CNN could225

achieve state-of-the-art or competitive results. Ma et al. [30] combined deep

learning techniques and traditional NLP (i.e., dependency tree). They proposed

a very simple dependency-based CNN. They considered a word and its parent,

grand-parent, great-grand-parent, and siblings on the dependency tree. Wang et

al. [31] described a jointed CNN and RNN architecture, taking advantage of the230

coarse-grained local features generated by CNN and long-distance dependencies

learned via RNN for sentiment analysis of short texts. Kim et al. [32] employed

a CNN and a highway network over characters, whose output was given along

short-term memory (LSTM) recurrent neural network language model (RNN-

LM). The authors claimed the model outperformed word-level/morpheme-level235

LSTM baselines. Liang et al. [33] proposed a hybrid model, combining the merits

of word-level and character-level representations to learn better representations

on informal text.

Generally, word-level representations directly capture word semantics from
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training corpus. However, it requires a large vocabulary. It is not able to handle240

out-of-vocabulary words. On the other hand, character-level representation can

handle unseen words. It is also insensitive to word morphology. However, it

may have large computational cost, as character-level representations have to

be aggregated to the word-level.

Deep learning has been used in many NLP applications, such as news clas-245

sification, sentiment analysis, and machine translation. However, as far as we

know, there is no existing studies on topical classification for domain names. In

our study, as a domain name is no longer available for registration once it is

ready taken, many domain names contain variations, abbreviations (e.g., “med”

for “medicine”), fillers (e.g., “abc”, “123”), and/or word stems (e.g., affixes).250

Therefore, relying on word-level representation leads to low classification per-

formance due to out-of-vocabulary words and noise. In addition, domain names

are extremely short. Most domain names have only 1-3 tokens. Thus, it is not

meaningful to use more advanced models, such as Long Short-Term Memory

(LSTM), attention [34], ELMo [35], designed for long input sequences. Due to255

the polymorphism and noisiness of domain names, we propose to use character-

level representations to capture the semantics of domain names. Character-level

representations that consider subwords can alleviate the impact of word varia-

tions, abbreviations, and word stems.

3. Problem Definition260

3.1. Terminology and Problem Definition

There are multiple systems of terminology for URLs. To make it clear,

below is the one used in this paper. A typical URL contains a subdomain, a

root domain, a top-level domains (TLD), and subdirectories. A TLD may

consist of multiple suffixes, such as “co.uk” or “info.us”. The combination of265

the first three parts is called a domain name, or a domain. In this work, we

focus on topical classification of domain names.
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Problem Definition. Given a domain name, e.g., www.foxnews.com, our

goal is to assign it into one of the topical categories, e.g., sports, reference, news.

In this project, these categories are pre-defined in the dataset we use.270

Figure 3: Terminology

Domain names are first segmented by dots among subdomains, root names,

and top-level domains (TLD).

Subdomains and root domains may consist of multiple words which are some-

times concatenated without any delimiters, e.g., “aboutit”. Thus, a non-trivial

method should be applied for word segmentation. The segmented words are275

referred to tokens in this paper. For instance, the subdomain and root domain

in Figure 3 are segmented into “research”, “about”, and “it”.

Besides tokens, our proposed model also takes subwords into account. Sub-

words are character n-grams (char n-gram) of a word. For example, the 5-

grams of “research” are “resea”, “esear”, “searc”, and “earch”.280

3.2. Dataset

In this project, we use a publicly available dataset, i.e., the Open Directory

Project (ODP) DMOZ dataset 5, which has been used in many existing stud-

ies [18]. The dataset organizes web page URLs into 15 first-level categories.

Within each first-level category, webpages are organized based on a hierarchical285

5http://dmoztools.net
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structure. In this project, we only focus on the first-level categories. It is ob-

served that the web pages in the regional category are also in other categories

and the pages in the world category are not in English. Following the practice

of [36], we remove the regional and world categories (13 categories are left).

Note that DMOZ data is on the semantics of URLs, not domains. A domain290

could have URLs that belong to different categories. To obtain a reliable gold

standard, we remove domains whose URLs are in more than one categories.

After de-duplication, we obtain about 200K domains in total.

4. Proposed Methods for Topical Classification of Domain Names

4.1. Empirical Observations295

As discussed earlier, topical classification of domain names is highly chal-

lenging. To address it, we have several observations.

First, domains are extremely short, with only 1-3 tokens. Compared with

traditional short text classification, it is non-trivial to model topic (e.g., using

Latent Dirichlet Allocation (LDA) [37] and/or utilize the relationship between300

words [38]. Thus, it is important to utilize all information provided in the

domain names.

Second, domain names are polymorphic. To avoid duplicates and/or keep

it short, people may come up with the domains by using abbreviations and/or

different forms of the words, e.g., “medicine” to “med”. The resulted tokens may305

not be valid English words, but they could be relevant to its topic. Therefore,

the proposed solution should take morphological information into account.

Third, top-level domains (TLD), e.g., com, edu, and org, sometimes indicate

the topics. For instance, “columbia.edu” is the official website of Columbia

University, while “columbia.com” is linked to a sportswear company. The TLDs310

can help distinguish them.

4.2. Subword Embedding Learning

Due to large variability in domain names, we propose to capture subword

semantics, instead of directly capturing the meaning of a token as a whole. The
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main reasons are 1) Domain names usually contain abbreviations. A number315

of abbreviations are subwords of the original words, e.g., “med” is short for

“medicine”. Directly building embeddings for entire words may not be able to

handle unseen abbreviations in test data. 2) Registrants often attach affixes to

a word stem to form an available domain name. Using subword embedding can

reduce the impact of these affixes. The meanings of subwords are filtered and320

aggregated for the entire token.

However, it is not evident how subword embeddings should be combined to

a token. Surprisingly, simply averaging word embeddings of all words in a text

has proven to be a strong feature across a multitude of tasks [39, 40, 41]. The

method of averaging subword embeddings is also adopted in fastText [42]. Thus,325

we use averaging to aggregate subword embeddings to token embeddings.

Subword embeddings have been proven to be effective in fastText. FastText

represents the meaning of words by unsupervisedly learning low-rank vectors

from a large textual collection. The vector of a word is obtained by sum-

ming vectors of the char n-grams appearing in the word. In this case, unlike330

Word2Vec [43], as long as their char n-grams occur the textual collection, fast-

Text can “predict” the semantic vector of unseen words, i.e., embeddings, and

the character sequences that are not valid English words. Thus, fastText can

alleviate the issue of polymorphy.

In this project, we investigate several ways to learn subword embeddings and335

evaluate them empirically.

The first method is to initialize the subword embeddings as what we do

for other parameters. Random initialization [44] is a commonly-used method:

The weights are initialized very close to zero, but randomly. This helps in

breaking symmetry and every neuron is not performing the same computation.340

The embeddings can be learned during the classification model training. The

advantage is that the embeddings should be more aligned with the prediction

target. On the other hand, embeddings may be overfit if training data is not

sufficient. In our empirical evaluation, an RNN model and a CNN model with

such randomly-initialized subword embeddings are denoted as RNN-random and345
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CNN-random, respectively.

The second approach to learn subword embeddings is to train the model on

an external corpus. A model is trained on a Wikipedia dump [45] with a default

model as proposed in [42]. Given a token, the model generates a 300-dimensional

embedding vector to represent its meaning in real-time. We used skip-gram to350

get pre-trained subword embedding. The values in the vector are not changed

during training once being learned from the external corpus. The advantage of

this method is that external corpus can help enhance the training data of the

original task, especially when the task training data is insufficient. External

corpus may contain much more unique words that are unseen in the training355

data. However, this method assumes that the semantics of a word learned from

the external corpus still holds in our domain name dataset. Otherwise, the

performance will be discounted. In the experiments, an RNN model and a CNN

model with such frozen subword embeddings are denoted as RNN-frozen and

CNN-frozen, respectively.360

The third method is to use the embeddings that are learned from the external

corpus in the previous method to initialize the subword embeddings, and then

further update the embeddings during model training. In the experiments, an

RNN model and a CNN model with such initialized subword embeddings are

denoted as RNN-initial and CNN-initial, respectively.365

Since each method has pros and cons, it is not clear which one best fit

our application. Thus, in the experiment, we evaluate all three strategies by

comparing the end performance of classification built upon them.

4.3. Domain Name Segmentation

To extract the subwords, domain names need to be segmented. Domain370

names are first segmented into a list of tokens. For each token, we extract the

subwords.

A domain name may contain a combination of numbers, letters, and hy-

phens. It is also allowed to use multiple instances of hyphens, but not a double

hyphen. Other forms of punctuation, symbols or accent characters cannot be375
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used. Therefore, a domain can be first segmented by periods and hyphens. For

instance, the root domain part of http://www.foxnews-global.com is first seg-

mented into “foxnews” and “global”. Further segmentation is then applied to

each of the initial tokens. For instance, “foxnews” is further segmented into

“fox” and “news”.380

Word segmentation is an essential natural language processing step in the

languages (e.g., Chinese and Japanese) wherein words are not delimited by

spaces. A common practice is training a statistical model to decide where the

word boundaries are. In this project, we use a publicly available API, wordseg-

ment [46], for English word segmentation. The API trains a language model [47]385

(i.e., a probability distribution over all the n-grams in English) and learn the

parameters of the model from the Google Web Trillion Word Corpus [48], then

the model to define the probability of each candidate segmentations. The can-

didate segmentation with the highest probability is the final segmentation. For

example, for a root domain “aboutit”, “about it” is a more probable one than390

“a bout it”. Thus, “about it” is the final segmentation. “about” and “it” are

the tokens in the root domain.

Each token of a domain name is then split into subwords (i.e., char n-grams).

The semantics of the subwords are represented by subword embeddings discussed

in Section 4.2. Taking Figure 3 as one example, the TLD “com.cn” is stripped395

and forms a separate feature. “research.aboutit” is then segmented into tokens:

“research”, “about”, and “it”. Subwords are then extracted from each token.

Assuming n = 3, the subwords of “research” are “res”, “ese”, “sea”, “ear”,

“arc”, and “rch”. The subwords of “about” are “abo”, “bou”, and “out”. The

subwords of “it” is “it”, since its length is less than three. The embeddings of400

the six subwords in “research” are used to model the semantic of “research”.

Similarly, the embeddings of the three subwords in “about” are used to model

the semantic of “about”. Finally, the embedding of “it” is used to model “it”.

All subword embeddings of a domain name is fed into a neural network

based model. The model classifies the domain name into one of the topical405

categories. This paper propose two types of models: RNN-based (Section 4.4)

16

http://www.foxnews-global.com


and CNN-based (Section 4.5).

4.4. An RNN-based Method

An RNN is a class of neural networks that can handle sequences with variable

lengths. Mimicking human reading behavior, RNN reads through the input410

text from left to right and finally generates a low-rank vector to represent the

semantics of the entire input text.

Figure 4 shows the structure of the RNN-based method. Assuming the given

domain has N tokens, each token can be divided into char n-grams. For each

token, we first look up the embedding of its char n-grams and then averages415

them together as the embedding of the entire token. An RNN reads the token

embeddings from left to right and summarizes the embedding by the hidden

layer of the last time step. Meanwhile, the top-level domains (e.g., “.edu”,

“.org”, “.uk”) are represented by one-hot encoding: The vector is length of the

number of unique top-level domains. All values are 0 except the one represents420

the corresponding top-level domain is 1.

In addition, it is observed that the segmentation module may mistakenly seg-

ment domains because domains may contain non-regular English words and/or

unseen words. For instance, in the example of Figure 2, “minecraft” may be

unexpectedly segmented into “mine” and “craft”, which deviates its original425

meaning. Also, “golang”, which can be the name of a programming language,

is split into “go” and “lang”. This causes a domain such as “golang.org” to

be incorrectly assigned to a category other than “Computers”. To overcome

this problem, besides tokens, we also add the subword embeddings of the entire

domain into the model. It is observed that the subword embeddings model can430

capture the meaning of “golang” well and classify “golang.org” correctly.

Due to the sparse semantic carried by domain tokens, multiple fully con-

nected layers are stacked to better abstractize and enrich the features. To

alleviate overfitting, we add a dropout layer after each fully connected layer.

Dropout [49] is a regularization technique for reducing overfitting in neural net-435

works by preventing complex co-adaptations on training data. it ignores units
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(i.e. neurons) during the training phase of a certain set of neurons which is

chosen at random. Experimentally, we use three 300-neuron layers with 50%

dropout rate (i.e., 50% of randomly-picked units are set to be 0 during the

training phase). At last, a softmax function is used to map the logits into a440

probabilistic distribution. Each number represents the probability the domain

belongs to the corresponding category.

Char n-gram
Embeddings 1 

Token 1

+

RNN

Char n-gram
Embeddings N

Token N

+

Char n-gram
Embeddings

Domain

+
Top-level
domain

Fully Connected Layers
(ReLU + dropout)

Topical Category

Softmax

……

Figure 4: The structure of RNN-based method

4.5. A CNN-based Method

It is also observed that domain names are usually noisy. Organizations

tend to add their business name to their domains. For instance, “health-445

pointplus.com” (HealthPoint Plus) can be segmented to “health”, “point”, and

“plus”. However, only the first token is relevant to its topic. The other two can

be regarded as noise. In other words, many tokens in this domain are irrelevant.

In addition, domain names cannot be duplicated. Therefore, to avoid duplicates,

some may add irrelevant or generic but easy-to-remember character sequences450

in their domains, e.g., “abc”, “world”, and numbers. These filler tokens can

appear as either prefixes or suffixes. Hence, models, like RNN, which considers

every piece of information and considers token order, may unnecessarily learn

too much noise, which hurts end performance.
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Therefore, a CNN-based method is proposed to overcome this issue. A455

Convolutional Neural Network (CNN) [28] consists of convolutional layers and

pooling layers. A convolutional layer defines a set of learnable filters, each of

which computes the output of neurons that are connected to local regions, e.g.,

word n-grams, in the input. The pooling layer will perform a downsampling

operation by taking the max or average among the output neurons. Thus,460

instead of capturing the meaning of the entire domain, CNN concentrates on

the local information and discards the local regions which are not sufficiently

significant. For example, a root domain “UniHealthFoundation” in the health

category has tokens “uni”, “health”, and “foundation”. CNN may give the

largest weight to “health” than “uni” and “foundation”. CNN also does not465

consider the entire order of the tokens in a domain. Instead, it considers the

order of tokens in local regions. In our application, CNN would be able to focus

more on significant tokens.

Token 1

+

Char n-gram
Embeddings 1 

Token 
Embeddings

…
…

…
…

Max-poolingConvolution

Domain

+

Char n-gram
Embeddings Top-level domain

Topical 
Category

Softmax

Token N

+

Char n-gram
Embeddings N 

…

Figure 5: The structure of CNN-based method

Figure 5 shows the structure of the CNN-based method, assuming the input

domain has N tokens. Since domains are short, the filter sizes we adopt are one470

and two. Through experiments, we adopt 512 filters for each filter size.
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5. Experiments

5.1. Experimental Dataset

As introduced in Section 3.2, we use a publicly available dataset ODP. After

data pre-processing, about 200K unique domains are obtained. The largest475

three categories are 1) Business: 27K, 2) Society 15K, and 3) Arts: 12K. The

smallest three categories are 1) News: 0.72K, 2) Home: 1.3K, and 3) Games:

1.8K.

90% domain names are assigned to the training set, while the rest of the

domain names are randomly and equally assigned to the validation and test set.480

In other words, the ratio of training, validation and test sets are 18:1:1.

The validation set is used in the early stopping strategy in order to avoid

overfitting: At the end of each epoch, the model obtained in the epoch is eval-

uated on the validation set. The model with the highest F-score is stored on

disk. The total number of epoch is set to be 60. After 60 epochs, the model on485

the disk got the best performance. It is finally used to predict the test dataset.

The experimental results are reported by three-fold cross-validation.

5.2. Implementation Details

Classification models are implemented in Python. All neural networks are

implemented in TensorFlow. The training process is accelerated by NVIDIA490

GeForce GTX 1060. The CPU processor is Intel Core i7. The RAM is 32GB.

We experimented with different parameters for the deep neural networks.

Below are the parameter combinations that lead to the best classification per-

formance. The RNN model outputs 300 hidden neurons. The CNN model has

one convolutional layer with 512 filters and one max-pooling layer. The dropout495

rate and the learning rate of both kinds of models are 0.5 and 0.001, respectively.

We use three fully connected layers, each of which has 300 hidden neurons.

The models are trained through 40 epochs with batch sizes of 512. Early

stopping is adopted to avoid overfitting. The model snapshot with the lowest

validation log-loss is stored on the disk. The test dataset is only predicted using500

the best model found on the validation data.
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5.3. Comparison Systems

The variants of the neural network-based methods are compared with several

baselines below:

• Token-based method: A given domain name is segmented into tokens. All505

unique tokens are used to represent the domain name. It is similar to the

bag-of-words model. A Support Vector Machines (SVM) model is used

for classification.

• Char n-gram-based method: Adopts the existing method, proposed in [18]

for URL classification, to classify domain names. This method can rep-510

resent most existing textual approaches. In particular, below features are

extracted from a domain name: 1) Tokens: Each domain name is low-

ercased and split into a sequence of strings of letters at any punctuation

marks, numbers, or other non-letter characters. 2) N-grams from Tokens:

A domain name is first split into tokens. Then character n-grams are515

extracted from each token. 3) N-grams from Domain Name: The given

domain name is not split into tokens. N-grams are extracted from the

entire domain name. 4) Encoding positional information: We duplicated

each n-gram (or token) and appended its position in the domain name to

it.520

Through experiments, we consider 4-5-6-7-8-grams, which lead to the best

performance.

5.4. Classification Performance

We first conduct experiments to evaluate the performance of the proposed

classifiers. Since the size of each topical category significantly varies, we use525

precision, recall, and F-score as the evaluation metrics. In addition, we also

use accuracy (with 0.5 as the decision threshold) to give us a more intuitive

indicator of the classification performance. The precision is the fraction of the

test domains labeled that are correctly labeled. The recall is the fraction of the
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domain names in a category are that correctly labeled. F-score is the harmonic530

mean of precision and recall.

Table 1 is the comparison of the classification performance. We first calculate

the precision, recall, and F-score of each category and find their unweighted

mean. The accuracy is directly computed across categories. The results are

sorted by F-score in ascending order.535

Table 1: Classification Performance

Approaches Precision Recall F-score Accuracy

Token 0.5390 0.3934 0.4379 0.4997

CNN-random 0.5062 0.4302 0.4532 0.5207

Char-ngram 0.5442 0.4235 0.4616 0.5230

RNN-frozen 0.5297 0.4422 0.4709 0.5322

CNN-initial 0.5280 0.4477 0.4745 0.5246

CNN-frozen 0.5600 0.4696 0.5002 0.5515

According to the result, the token-based method performs the worst because

it only considers tokens extracted from tokens. As a result, its feature vectors

are highly sparse. Domains have little chance to share the same tokens. The

char n-gram based method performs much better; it uses one-hot encoding to

model subword information. In contrast to the token-based method, it can540

better identify domain names which share the same words with variants. As

mentioned previously, word variants are common in domain names because two

domain names cannot be the same. Identifying domain names with the same

word stem is highly important.

We initialize the subword embeddings in different ways: 1) “random”: The545

embeddings are randomly initialized; 2) “initial”: The embeddings are initial-

ized by the char-gram embeddings learned from the Wikipedia dump. The

embeddings are adjusted during model training; 3) “frozen”: The embeddings

are initialized by the char-gram embeddings learned from the Wikipedia dump.

They are frozen during model training.550

22



The result shows that, with frozen embeddings, RNN-frozen is not as ef-

fective as CNN-frozen. The reason is that the output of RNN takes all char

n-grams into account. However, the signal-to-noise ratio of domain names is

often low. For instance, chances are one out of two that a word in a domain

name is irrelevant to the topic of the website. Thus, RNN may mistakenly in-555

clude noise. In contrast, the pooling layer in a CNN is able to ignore the least

significant signal.

The CNN with frozen subword embeddings performs the best. Randomly

initializing the subword embeddings does not lead to good performance. The

reason is that it is highly difficult to learn char n-grams semantic representation560

completely from scratch on the domain name dataset because there are tons

of unique subwords. The ODP dataset is not large enough for neural networks

to fully capture subword semantics. On the other hand, Wikipedia contains

subwords with sufficient occurrence. Thus, embeddings built upon Wikipedia

can capture meanings more accurately. Also, Wikipedia covers more unique565

subwords so that “CNN-initial” and “CNN-frozen” have less unseen subwords

in the test data. In addition, it is interesting to see that freezing the subword

embeddings learned from Wikipedia outperforms making the embeddings train-

able, i.e., “CNN-initial”. To minimize the log-loss on the training data, the deep

neural networks may overfit and thus deviate the subword embeddings that are570

learned from Wikipedia.

We also present the impact of different filter sizes, the numbers of hidden

neurons in the fully connected layers, and the dropout rates.

We first vary the filter sizes of the proposed CNN models from 128 to 1024.

Similar to other parameters in deep neural networks, the filter size is trade-off575

between under-fitting and over-fitting: The larger the filter size is, the higher

complexity of the model has and the more likely it is that the model overfits

the training data. The results in Figure 6 reflect that the filter size impacts the

F-score slightly. All models obtain the best performance when the filter size

is 512. A too large or too small filter size may hurt the performance due to580

under-fitting or over-fitting. We also find that it takes 10% longer time to train
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Figure 6: Varying The Filter Size of CNN

a model with a filter size of 1024 than a model with a filter size of 128.

Figure 7: Varying The Number of Hidden Neurons

We then vary the number of hidden neurons in the fully connected layers

from 100 to 500. The results in Figure 7 show that the number of hidden neurons

has slight impact on the F-score. Although wider/narrow fully connected layers585

may cause over-/under-fitting, it is interesting to see that the F-scores at 100

and 500 are even slightly higher than those at 200 and 400. The performances

of different numbers of hidden neurons are not significantly different.
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Figure 8: Varying The Dropout Rate

We finally try different dropout rates from 0% (i.e., no dropout) to 75%.

The higher the dropout rate is, the stronger regularization the model has. The590

results in Figure 8 present that adding dropout layers can largely improve F-

scores. Compared with the filter size and the number of hidden neurons, the

dropout rate has much larger impact on the performance. A too high dropout

rate (i.e., 75% in our case) tends to make the model underfit the training data:

the abstract features learned in the hidden layers are randomly erased to zeros.595

5.5. Ranking Performance

In some business scenarios, accurately classifying a domain name into one

single category may not be necessary. For instance, given a user input do-

main name, a domain name recommendation system may not return available

domain candidates from only one category, but candidates from multiple cate-600

gories. As accurately classifying a domain name is highly challenging, enhancing

recommendation diversity can minimize the risk. For example, a user submits

desktopsolutions.net. It is difficult to determine whether it should belong

to “Home” or “Computers” category. Thus, we can generate top candidate

domains names (that are available to register) from all possible categories and605

rank these domains by the probabilities that the domain belongs to the cate-
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gory. For example, in the return list (similar to the interfaces shown in Figure 1

and 2), the first three candidate domains are from the “Home” category and the

next four are from the “Computers” category. In this case, even though the top

predicted category is incorrect, the user still can find relevant recommendations610

in the rest part of the ranking results.

Therefore, besides classification metrics, we also evaluate our models using

ranking metrics: Mean Reciprocal Rank (MRR) and Average Rank. The mean

reciprocal rank is a statistical measure for evaluating any process that produces

a list of possible responses to a sample of queries, ordered by probability of615

correctness. The reciprocal rank of a query response is the multiplicative inverse

of the rank of the first correct answer. Eq. 1 is how we calculate MMR: D is

the number of test domain names, while ranki is the rank of the true category

in the prediction of the i test domain name.

MRR =
1

|D|

|D|∑
i=1

1

ranki
(1)

Since MRR only cares about the single highest-ranked relevant item, it is suit-620

able for our problem where only one out of 13 categories is the true label of a

given domain name. The higher the MMR, the better the model. In addition,

as a more intuitive metric, average rank is the mean of the true category in the

prediction of all test domain names. Therefore, the lower the average rank, the

better the model. A classifier with an accuracy of 1 has an average rank of 1.625

The worst classifier has an average rank of 13 (13 categories in total).

Table 2 show the comparison result by MRR and average rank. Likewise, the

CNN-frozen has the best performance in terms of both metrics. It is also inter-

esting to see that, although the F-score of RNN-frozen is slightly lower than that

of CNN-initial, the ranking performance of RNN-frozen is significantly better.630

This is because, even if a true category is not ranked first in the prediction of

RNN-frozen, it is usually ranked in the top of the list. In contrast, CNN-initial

may assign more correct labels to the test domain names. However, once it

makes a mistake, the true category tends to be ranked at a lower place. This is

not preferable in a real-world business scenario. For example, for domain name635
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recommendation, it is expected that even if the correct recommendations are

not in the top positions, they should be in the first page in order to have good

visibility.

Table 2: Ranking Performance

Approaches MRR Average Rank

Token 0.6499 2.8492

Char-ngram 0.6683 2.7265

CNN-random 0.6721 2.5729

CNN-initial 0.6756 2.5369

RNN-frozen 0.6869 2.4068

CNN-frozen 0.6983 2.3786

5.6. Detailed Performance of The Best Classifier

Table 3 is the classification performance of CNN-frozen in individual classes.640

The last column is the number of test domain names in each category. Since

the training and test data are split proportionally, a category with large test set

also has a large training set.

It is interesting to see that the performance in each category is correlated

with the size of the category. The Pearson’s R between the count and the recall645

is 0.755. This is a strong positive correlation, which means that large category

size goes with high recall scores (and vice versa). In addition, there is a weak

negative correlation between category size and precision scores (Pearson’s R

= -0.0957). This is reasonable because a classifier may learn larger categories

better and tend to assign more large category labels. Thus, the recalls of large650

categories are high. In this case, their precision may be inevitably hurt. As

a result, the Pearson’s R between F-scores and the category sizes is 0.6094.

This is a moderate positive correlation. Hence, generally speaking, the classifier

performs well in large categories.

Table 4 is summarized from the test prediction result of CNN-frozen. It655
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Table 3: Classification Performance of CNN-frozen in Individual Classes

Category Precision Recall F-score Count(Test)

Business 0.5442 0.7025 0.6133 2678

Society 0.6493 0.5900 0.6182 1522

Arts 0.4838 0.5939 0.5332 1203

Shopping 0.4770 0.3811 0.4237 1004

Recreation 0.5392 0.5024 0.5201 847

Computers 0.5179 0.4564 0.4852 825

Sports 0.6501 0.6250 0.6373 648

Science 0.5229 0.3131 0.3917 511

Health 0.6503 0.4786 0.5514 442

Reference 0.5353 0.4631 0.4966 392

Games 0.5840 0.3967 0.4725 184

Home 0.6444 0.2320 0.3412 125

News 0.4821 0.3699 0.4186 72

presents how many fractions of domain names in a category are correctly/incorrectly

assigned into another category. For instance, 62 “Arts” domain names are cor-

rectly assigned into the “Arts” category, while 13.1 are mistakenly labelled as

“Business”. The sum of each row is 100.

The result shows that “Business” is the most “popular” category in the pre-660

diction results. This is the main reason why its recall is the highest in Table

4. The “business” domain names that are correctly classified are like http://

www.indianahealthinsurance.com/, http://www.timebussystems.com/, http:

//www.horsetrailerworld.com/, and http://www.insigniafutures.com/. On

the other hands, a great number of domains names from other categories are665

mistakenly assigned to “Business”. There are two reasons: 1) As discussed

above, “Business” is the largest category in the training data. Thus, the

classifier tends to label more “Business” domain names, especially for those

with low confidence. 2) Conceptually, “Business” is highly broad: Almost ev-
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Table 4: Prediction Distribution of Individual Classes (Percentage)
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erything can be a business. The boundary between business and other cat-670

egories is ambiguous in nature. For example, a “Computers” domain name

http://www.k12financials.com/, a website providing enterprise management

solutions for K-12, is misclassified as “Business”. Probably, the token “fi-

nancials” misleads the classifier. However, the website is, in fact, relevant to

business because it provides business services. Likewise, a “Shopping” domain675

name http://www.littlegreenworkshop.co.uk/ links to a website selling hand-

crafted products. Its true cateogry is “Shopping”, which has similar meaning

with “Business”. More accurately speaking, “Shopping” can be a hyponym of

“Busienss”. Thus, although it is misclassified into “Business”, such a mistake

can be tolerable in domain recommendation application: Recommendation can-680

didates from “Business” (e.g. http://www.jeterphoto.com//) should also meet

the needs of a user whose is looking for a “Shopping” domain name. By carefully

design their own categories, registrars can avoid such misclassification.

The “Home” category is one of the smallest categories. Example domains

in this category include sydneycitybonsai.org.au, vegetariansrecipes.org,685

and socalplumeriasociety.com. The “Home” category has the least recall,

meaning many domain names with true labels “Home” are misclassified into

other categories. For example, http://www.fixya.com/ is a community based

troubleshooting resource that provides consumer-generated, practical product

tips. Consumers can get answers on products, such as appliances, office supplies,690

and cars. Since computers are covered in the website, misclassify it into “Com-

puter” may not be an inexcusable error. Also, http://www.creditcardinsider.com/

is a website that provides suggestions on how credit cards work and how to build

credit. It is not a business website that people can buy and sell goods or ser-

vices. However, as the domain contains “creditcard”, it is mistakenly signed to695

the “business” category.
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6. Conclusions

The domain name service is a billion-dollar industry. In order to suggest

relevant and available alternatives to registrants, it is important to understand

the topic of the preferred domain name initially submitted.700

The proposed method can be used as the first step of domain name rec-

ommendation. The classifier identifies the user intent by assigning the user-

submitted domain names into one of the pre-defined topical categories. The

cost of the mis-classification can be significantly reduced by diversifying domain

recommendations. Recommended domain names from different categories can705

be ranked by the predicted relevance. Top domains from diverse categories can

be all shown on the first page. In this case, even if the most possible category is

incorrect, users may still see relevant suggestions in the rest of the return list.

The proposed method can improve user intent identification so that the correct

sets of modifiers can be later triggered. The outcome can reduce users’ effort of710

searching for relevant and available domain names. Also, it may boost domain

registrars’ revenue.

This paper addresses the problem of domain name classification, which is

a critical part of domain name understanding. We propose to utilize subword

information, and design deep neural network-based models to assign a domain715

name to one of 13 topical categories. We also propose three strategies to com-

pute subword representation. Experimental evaluation verifies the effectiveness

of our proposed models. The CNN with frozen subword embeddings learned

from Wikipedia performs the best.
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