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ABSTRACT
As a massive industry, display advertising delivers advertis-
ers’ marketing messages to attract customers through graphic
banners on webpages. Advertisers are charged for each view
of a page that contains their ads. However, recent stud-
ies have found out that about half of the ads were actually
never seen by users because they do not scroll deep enough
to bring the ads in-view. Low viewability hurts financially
both the advertisers and the publishers. This paper is the
first to address the problem of ad viewability prediction,
which can improve the performance of guaranteed ad deliv-
ery, real-time bidding, and even recommender systems. We
analyze a real-life dataset from a large publisher, identify a
number of features that impact the scroll depth of a given
user-page pair, and propose a probabilistic latent class model
that can predict the viewability of any given scroll depth for
a user-page pair. The experiments demonstrate that our
model outperforms comparison systems based on singular
value decomposition and logistic regression. Furthermore,
our model needs to be trained only once, independent of the
target scroll depth, and works well in real-time.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Commercial services, Web-based ser-
vices

General Terms
Algorithms, Performance, Economics, Experimentation, Hu-
man Factors
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1. INTRODUCTION
Online display advertising has emerged as one of the most

popular forms of advertising. Studies [16] show that display
advertising is generating earnings of over $63.2 billions in
2015. Online advertising involves a publisher, who integrates
ads into its online content, and an advertiser, who provides
ads to be displayed. Display ads can be seen in a wide range
of different formats and contain items such as text, images,
Flash, video, and audio. A typical display ad is shown in
Figure 1: an advertiser, e.g., Audi, pays a publisher, e.g.,
Forbes, for space on webpages to display a banner during
page views in order to attract visitors that are interested in
its products. A page view happens each time a webpage is
requested by a user and displayed in a browser. One display
of an ad in a page view is called an ad impression, and it
is considered as the basic unit of ad delivery. For instance,
one view of the page in Figure 1 contains one ad impression.

Figure 1: An Exam-
ple of Display Ads

Advertisers pay for ad im-
pressions with the expectation
that their ads will be viewed,
clicked on, or converted by users
(e.g., the ad results in a pur-
chase). Traditional display ad
compensation is mainly based
on user clicks and conversion,
because they bring direct prof-
its to the advertisers. Much re-
search has been done for pre-
dicting click rate and conver-
sion rate [7, 20], bid optimiza-
tion [25], auctions [6], and audience selection [13].

Recently, there are growing interests by advertisers to use
online display ads to raise brand awareness and to promote
the visibility of the company and their products. Indeed,
users like to purchase products from the brands that they
trust and that they can identify. Display ads can create emo-
tional experience that gets users excited about a brand and
build trust. However, users do not typically click this type



of ads, rendering the traditional form of pricing structure
based on clicks or conversion to be ineffective.

To address this, another pricing model, which pays ads
by number of impressions that a publisher has served, has
become popular in the display advertising market. However,
a recent study [10] shows that more than half of the impres-
sions are actually not viewed by users because they may not
scroll down a page enough to view the ads. Low viewability
leads to ineffective brand promotion.

In light of this, a new pricing model is emerging: pricing
ads by the number of impressions that can be viewed by
a user, instead of just being served [18]. This avoids the
frustration of advertisers’ concern of paying for ads that were
served but not seen by users.

Not surprisingly, ads placed at different page depths have
different likelihood of being viewed by a user [9]. Therefore,
it is important to predict the probability that an ad at a
given page depth will be shown on a user’s screen, and thus
be considered as viewed. The vertical page depth that a
user scrolls to is defined as the scroll depth. Many web
analytics platforms, e.g., Google Analytics, provide plugins
to measure user scroll depth.

Viewability prediction is important for many applications:
Guaranteed impression delivery. One of main ad selling
methods is guaranteed delivery, in which advertisers con-
tract publishers to buy guaranteed advertising campaigns.
The contracts may fix the number of impressions, targeting
criteria, price, etc. As the industry moves toward transact-
ing on viewable impressions, advertisers may propose con-
tracts that specify the number of guaranteed viewable im-
pressions. Predicting ad viewability helps publishers to ful-
fill such contracts by placing the ads in the right impressions.

Real-time impression bidding. Advertisers can also buy
impressions through real-time bidding. Given the impres-
sion context, including the user, the page, and the ad posi-
tion, advertisers desire to know the probability that the ad
will be in-view. Based on the viewability, advertisers can
adjust the bidding price for an impression and improve ad
investment effectiveness. Specifically, they can bid higher
for impressions with high predicted viewability. In addition,
publishers can also benefit from ad viewability prediction
by adjusting the minimum prices for impressions which are
offered for bidding.

Webpage layout selection. With the ad pricing standards
shifting to ad viewability, viewability will become a cru-
cial factor in page layout design, which may impact ad rev-
enue [8]. Publishers are exploring personalized page layouts
that can balance ad viewability and user experience. For
example, if a user will not scroll deep, the ad slot at the
bottom may be moved higher, while considering the impact
on user experience.

Recommender Systems. Dwell time (i.e., the time a user
spends on a page) has been regarded as an significant indica-
tor of user interest. Recommender systems can also employ
scroll depth prediction as another critical metric of user in-
terest.

In this paper, we study the problem of predicting the prob-
ability that a user scrolls to a page depth where an ad may
be placed, thus the ad can be in-view. To the best of our
knowledge, this is the first work that tries to address viewa-
bility prediction.

Scroll depth viewability prediction is challenging. First,
most users visit only several webpages on a website. It is

challenging to detect user interests based on such a sparse
history of user-page interaction. Second, it is hard to se-
lect the significant webpage and user features related to the
user scrolling. Intuitively, page topics and user interests are
regarded as influential factors. But it is non-trivial to explic-
itly model these features. Naturally, we may resort to latent
models that utilize latent features. However, a commonly
used latent model, Singular Value Decomposition (SVD), is
not suitable to give probabilistic prediction on a full spec-
trum of scroll depths. Specifically, an SVD model can be
trained with data consisting of users, pages, and whether
a certain scroll depth is in-view in individual page views,
and then be used to predict the viewability for that spe-
cific scroll depth. But one SVD has to be trained for each
possible scroll depths. Another option is to train an SVD
model with data consisting of users, pages, and the maxi-
mum page depth a user scrolls to on a page. The predicted
maximum page depth can help give a binary decision for any
given scroll depth (i.e., in-view or not), but it cannot give
a probabilistic value for a scroll depth to be in-view, which
is important to determine pricing. As a webpage typically
have multiple ad slots at different page depths (and some-
times ad positions may be even dynamically determined),
it may be costly to build one SVD model for every single
depth.

In this paper, we first analyze a real-life dataset from a
large publisher to understand user scrolling behavior. Then,
in order to find out how probable a specific user is to scroll
to any given page depth, we propose a viewability prediction
model based on the probabilistic latent class model (PLC).
Our model utilizes latent user classes and webpage classes as
well as an observed scroll distribution to overcome the data
sparsity issue. The output of the model is the probability
that a given scroll depth is in view. Compared with a binary
decision, i.e. in-view or not, a probabilistic output is very
useful in optimization problems, e.g., page layout selection.

PLC has been experimentally compared with three sys-
tems: SVD, Logistic Regression (LR), and a determinis-
tic method. The experiments show that, on average, PLC
achieves a higher F1-score for both in-view and not in-view
classes than the other systems. PLC has also a significantly
lower prediction error than the comparison systems. Also,
unlike LR and SVD, one trained PLC model can predict the
viewability of any scroll depth. Thus, PLC is less costly. In
addition, PLC can make predictions fast enough to be usable
in real-time. Finally, PLC works well for different training
datasets, with a 10-day dataset resulting in the optimal bal-
ance between training time and prediction accuracy.

In summary, the paper makes the following contributions:
1) We define the problem of viewability prediction for any
scroll depth. 2) We present an empirical study of scrolling
behavior using a real-life dataset. 3) We propose a novel sta-
tistical model based on PLC to predict the probability that
a scroll depth will be in view. (4) We demonstrate experi-
mentally that PLC outperforms three comparison systems.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 presents the results and
analysis of the empirical study for user scroll depth behavior,
and then describes the proposed PLC model for viewability
prediction. Experimental results and insights derived from
these results are presented in Section 4. The paper concludes
in Section 6.



2. RELATED WORK
Researchers have investigated scrolling behavior and viewa-

bility for webpage usability evaluation. In [22, 17, 9], the
authors discovered that users spend more time looking at
information on the upper half of the page than the lower
half, and little scrolling happens. Also, the distribution of
the percentage of page content viewed by users follows a nor-
mal distribution, which is also observed in our data analysis
presented in Section 3. We differ from these works in our
main goal, which is viewability prediction.

Existing work [2, 12] collects scrolling behavior and uses
it as an implicit indicator of user interest to measure the
quality of webpage design and content. In contrast, we de-
sign an algorithm to predict the scrolling behavior for any
user-webpage pair.

Several studies have attempted to predict user browsing
behavior, including click [7, 21, 5, 1] and dwell time [15, 23].
For click prediction, one important application is sponsored
search, i.e., ads are selected based on user queries submitted
to search engines and shown along with the search results.
Chen et al. [7] propose a factor model to predict if an ad
shown together with search results at a specific position will
be clicked on. However, this prediction is made for a given
position and a query-ad pair, which does not consider the
individual user as a factor. In contrast, our method makes
predictions that are tailored for individual users and pages.

Wang et al. [21] learn user’s click behavior from server
logs in order to predict if a user will click an ad shown
for the query. The authors use features extracted from the
queries to represent the user search intent. In our case,
search queries, which can explicitly reflect user interest, are
not available. Most of the work on click prediction [5, 1] is
done on the advertiser side. To predict how likely an ad is
clicked, the authors collect high-dimensional features about
users (e.g., private profiles), ad campaigns (e.g., ad content),
and impression context. However, such data is not accessi-
ble on the publisher. Our goal is to use the publisher side
data to predict page viewability.

For dwell time prediction, Liu et al. [15] fit the dwell time
data with Weibull distributions and demonstrate the pos-
sibility of predicting webpage dwell time distribution from
page-level features. Yi et al. [23] predict dwell time through
Support Vector Regression, using the context of the web-
page as features. Both methods do not consider individual
user characteristics, which is an important factor of scrolling
prediction.

In summary, although ad viewability and scrolling behav-
ior have been studied, there is no existing research attempt
to predict the maximum scroll depth of a user/page pair and
implicitly to predict the ad viewability. In addition, exist-
ing methods for user behavior prediction cannot be easily
adapted to solve the scroll depth prediction problem.

3. VIEWABILITY PREDICTION
In this section, we formally define the research problem,

present the analysis of user scrolling behavior using a dataset
from a large publisher which reveals several features that im-
pact the scroll depth, and finally describe our novel viewa-
bility prediction model.

3.1 Problem Definition
Let us first introduce several important concepts used in

the problem definition: 1) The scroll depth is the percentage

of a webpage content vertically scrolled by a user. 2) The
maximum scroll depth of a page view is how far down the
page the user has scrolled during that view. The maximum
scroll depth that a user u will scroll on a webpage a is de-
noted as xua. 3) The target scroll depth, denoted as X, is
the page depth whose viewability an advertiser or publisher
wants to predict. For instance, a publisher wants to predict
the probability that an ad is in-view in a page view. In this
case, the target scroll depth can be the percentage of the
webpage that contains at least half of the ad. 1

Our problem is to estimate how likely a user will be to
scroll down to a target scroll depth of a webpage. Specif-
ically, the prediction should be personalized to individual
users and webpages. The proposed approach is a supervised
learning technique. The inputs of the training module are
historical user logs that contain the context of page views.
The output is our viewability prediction model. The inputs
of the prediction model are a target page depth X and a
given pair of user u and webpage a, while the output is the
viewability probability of X in the page view.

Problem Definition. Given a page view, i.e., a user u
and a webpage a, our goal is to predict the probability that
the max scroll depth, denoted by xua, will be no less than X,
i.e., P (xua ≥ X|u, a).

3.2 Real-Life Dataset
We use a proprietary dataset collected over one and a

half months on a large publisher’s website. It contains more
than 1.2 million page views and 100 thousand unique users.
The dataset consists of logs of user browsing behavior cap-
tured via Javascript events. These scripts send the collected
data to a server. This type of client-side approach can accu-
rately capture users’ attention even in multi-tabbed modern
browsers [23].

Figure 2: An Exam-
ple of a Scroll Depth

The scroll depth is recorded
according to the last row of pix-
els on users’ screens. In this pa-
per, we adopt 1% as the mini-
mum unit of scroll depth; thus,
the range of scroll depth is from
0% to 100%. Once a user stops
scrolling and stays at a position
for one second, the scroll depth
is recorded in the user log. Fig-
ure 2 shows an example of the
user log, in which the bottom of
the user screen is at the 50% of
the whole page. Thus, the scroll
depth at the moment is 50%.

The user log of this project
includes user IDs, URLs, user
agents, user geo-locations and
maximum scroll depths of page views. Individual users are
identified by cookies. Table 1 illustrate some of the impor-
tant attributes captured in the log. Each row corresponds
to a page view. For instance, the maximum scroll depth of
the first page view is 72% and that of the second page view
is 66%.
1This is in line with the definition suggested by the Interac-
tive Advertising Bureau: a viewable display ad impression
requires that a minimum of 50% of pixels be in-view for a
minimum of 1 second. We do not consider the one second
in-view duration.



Table 1: Example of User Log

User
ID

IP URL
Max Scroll

Depth
GMT Time

001 1.3.4.5 /abc 72% 11/23/2014 11:00:00
002 7.6.9.2 /bcd 66% 11/23/2014 11:01:33

Figure 3 illustrates the distribution of max scroll depths
in our user log. We observe that the distribution of the max
scroll depth generally follows a normal distribution. It can
also be noticed that there are very few page views whose
scroll depths are less than 10%. The main reason is that the
the top 10% of most webpages can be loaded on the first
screen, especially on desktops. In this case, the viewability
of the first 10% of webpages is almost always 1. Therefore, in
this research, we mainly focus on the viewability prediction
for the page depths greater than 10%.

Figure 3: The Distribution of Max Scroll Depth

3.3 Features Impacting the Max Scroll Depth
We analyzed the dataset to understand which log attributes

influence the scroll depth the most, with the aim of selecting
these attributes as features in our prediction model.

3.3.1 Scroll Depth vs. Device Type
The reason that we adopted page percentage, rather than

pixels, as a measure of scroll depth is because it provides a
relative measure independent of device types (i.e., different
devices have different screen sizes). If a user reads 50% of a
page on a mobile device, while another user reads 50% of the
same page on a desktop, it can be assumed that they read
the same content of the page. However, this does not deny
a hypothesis that devices may affect user behavior which
may further influence the max scroll depth. For instance,
when reading on mobile phones, users may not have enough
patience and may leave the page with little scrolling.

Figure 4: Distribution of Max Scroll Depth across
Devices

Figure 4 illustrates the distribution of the max scroll depth
across multiple devices, i.e., desktop, mobile/phone, and
tablet. The device type is detected from the user agent
attribute. The average max scroll depth is highest on the
tablets (65.7%), followed by desktops (61.6%), and mobiles

(60.2%). The possible reasons for the overall similar re-
sults across devices are: 1) The publisher’s webpages are
displayed in a mobile-friendly manner; 2) Flicking fingers on
the screen is as easy as scrolling the wheel of a mouse [14].
Finally, we notice that mobiles, as expected, have certain
page views with max scroll depth under 15%. This is very
rare for desktops. The reasons for such low percentages are:
1) some pages are very long on the mobiles; 2) users close
the browser tabs with loaded pages before they view these
pages or stop loading the pages before they are shown, in
which case the max scroll depth is zero. Although generally
similar, the results exhibit a number of differences, and thus
we consider the device type as a feature in our prediction
model.

3.3.2 Scroll Depth vs. Geo-location

Figure 5: Average Max Scroll Depth as a Function
of User Geo-location

Our user log records the countries from which the visi-
tors connect and the US states if the visitors are from US.
We filtered out the locations with sample page view sizes
less than 1000. Figure 5 shows that most of the top 50 lo-
cations for max scroll depth are US states. Interestingly,
visitors from U.S. Virgin Islands (65.62%) view pages the
deepest, followed by New York State (65.60%) and Texas
(65.49%). On the other hand, user from Namibia read the
least (53.23%). In addition to user interests and reading
habits, user geo-locations may also determine the connec-
tion speed, the distance from the publishers’ host servers,
etc. These factors, independent of users and webpages, may
directly play a role on how users engage with the content.
Since user geo-location is a significant factor, we consider it
in our prediction model.

3.3.3 Scroll Depth vs. Day of the Week

Figure 6: Distribution of Max Scroll Depth for Week
Days

The day of the week and hour of the day are calculated
using the local time of the user which is inferred from the
user’s IPs and the GMT time in the user log. Figure 6
shows that the day of the week does not have a significant
impact on the scroll depth. This result contradicts past



research [24] which revealed that the day of week determines
the impression volume. Thus, we do not consider the day of
the week in the prediction model.

3.3.4 Scroll Depth vs. Hour of the Day

Figure 7: Distribution of Max Scroll Depth of Dif-
ferent Hours of the Day

One plausible hypothesis is that users may scroll deepest
in the evening, after work. However, surprisingly, Figure 7
demonstrates that users seemingly perform very similar at
different hours of the day. Thus, the hour of the day is not
a significant factor to predict max scroll depth.

3.4 Max Scroll Depth Prediction Model
Our primary task is to infer the max scroll depth of a page

view, xua, where u is the user and a is the webpage.
It is intuitive that the characteristics of individual users

and webpages can be utilized to improve the performance
of max scroll depth prediction models. For example, users
who prefer to scroll far down on most webpages would have
a higher probability to scroll down the current page. Also,
features such as the ones identified in Section 3.3 (i.e., device
type and geo-location) are easy to be modeled.

However, some other significant features are very hard
to be captured due to lack of data and the ambiguity of
user-webpage interaction. For example, pages with popular
content and good design may motivate users to scroll more.
But accurately modeling topic popularity and design is dif-
ficult. Other examples include user interest and psychology.
Therefore, depending solely on explicit features will not lead
to an accurate prediction.

In addition to feature modeling, data sparsity is another
challenge. While a large publisher usually has tens of thou-
sands of webpages, one user only visits several. Likewise,
one page may be visited by a small subset of the entire user
population. As a result, the user-page interaction employed
in prediction could be extremely large and sparse, which
brings about challenges in the prediction performance. A
commonly-used solution is grouping similar users and similar
webpages together and infer the prediction for a user/page
pair using the known data of similar user/page pairs.

To overcome these issues, we use a latent class model [4,
3] to discover classes of users and webpages. Specifically, we
build a probabilistic latent class model (PLC). The intuition
behind PLC is that different latent classes of webpages and
users tend to generate different levels of max scroll depths.
PLC can detect classes of users and webpages that share
similar patterns of max scroll depth. The class membership
of each user and webpage are learned from the user log. PLC
outputs the probability P (xua|u, a), where xua is the max
scroll depth that a user u reaches in a page a.

In addition, PLC incorporates our finding that max scroll
depths of page views follow a normal distribution, as shown

in Figure 3. Particularly, given a latent user class and a
webpage class, we specify the outputted max scroll depth
to follow a normal distribution by modeling the conditional
probability as the probability density function of the normal
distribution. Formally, PLC works as follow:

P (xua|u, a) =

Ns∑
i=1

Np∑
j=1

P (si|u)P (pj |a)P (xua|si, pj) (1)

where xua is the max scroll depth of a page view. Ns is
the number of latent user classes, and Np is the number of
latent webpage classes. Both Ns and Np are pre-defined as
model parameters. The optimal values for these parameters
can be explored by cross validation. P (si|u) is the proba-
bility that user u belongs to the latent user class si, while
P (pj |a) is the probability that webpage a belongs to the
latent webpage class pj . The last term, P (xua|si, pj), repre-
sents the probability that the max scroll depth of the page
view is xua, given the latent user class si and webpage class
pj .

As mentioned above, the last term can be approximated
by the probability density function of the normal distribu-
tion (Formula 2).

P (xua|si, pj) =
1

σsipj ·
√

2π
∗ exp

(
− (xua − µua)2

2σ2
sipj

)
(2)

The right side of Equation 2 is developed based on the
probability density function of a normal distribution, i.e.,

1

σ
√

2π
· exp(− (x−µ)2

2σ2 ). The mean of the distribution, µua,

can be modeled by a regression whose features are extracted
from the history of u and a as well as the context of the page
view, i.e., µua =

∑M
m wspmf

ua
m . fuam is the mth feature and

wspm is the weight of the mth feature. Each pair of latent
user class si and latent webpage class pj has a set of wsipj∗
and σsipj . M is the total number of the features.

Based on the observations presented so far, we consider
seven features:

• User Features:
1) The mean max scroll depth of all page views of u.
This feature captures user browsing habits.
2) The most recent three max scroll depths of u. This
feature captures the recent scroll behavior of the user.

• Webpage Features:
3) The mean max scroll depth of a by all users. This
feature captures the overall popularity of the webpage.
4) The most recent three max scroll depths of page
views of a. This feature captures the recent scroll be-
havior for this webpage.

• Interaction of User and Webpage:
5) Interaction of the mean max scroll depth of u and
that of a, i.e., the product of features 1 and 3. This is
a commonly-used method in statistics to capture the
joint effect of two input variables, i.e., for particular
user and page, the scrolling behavior depends on both.

• Page View Context:
6) User geo-locations, which were shown to be impor-
tant by our analysis of the dataset.2

2There are 172 locations in our dataset. The number of di-
mensions are reduced to 20 by Principal Component Anal-
ysis (PCA). We also tried feature hashing, which generates



7) Device Type (i.e., desktop, mobile, or tablet), also
shown to have a certain relevance by our analysis.

These features are used to train the normal distribution
of each pair of latent user class si and webpage class pj . Let
W be the collection of the weight vectors wsp∗ of all latent
user classes s and webpage classes p. σ is the collection
of the standard deviations σsp∗ of all latent user classes s
and webpage classes p. Specifically, the features help to
iteratively determine W and σ.

In Equation 1 and 2, there are several parameters (P (s|u),
P (p|a), W, σ). They can be calculated by maximizing the
following likelihood function:3

l (P (s|u), P (p|a),W,σ) =

∑
u,a

log

 Ns∑
i=1

Np∑
j=1

P (si|u)P (pj |a)P (xua|si, pj)

 (3)

Maximizing equation 3 determines the set of parameters.
To maximize it, we adopt the Expectation Maximization
(EM) algorithm, which is is widely used to solve the maximum-
likelihood parameter estimation problem. The EM algo-
rithm performs an expectation step (E-step) and a maxi-
mization step (M-step) alternatively. The E-step creates a
function for the expectation of Equation 3. This function,
i.e., Equation 4, is evaluated using the current estimates of
the parameters. The initial values of the parameters are
randomly generated.

P (si, pj |u, a, xua) =

P (si|u)P (pj |a) · 1

σsipj ·
√

2π
·

exp

(
−

(xua −
∑M
m wsipjmf

ua
m )2

2σ2
sipj

)
(4)

The M-step updates the parameters in Equation 4, which
can maximize Equation 3. The M-step updates the value of
each parameter based on the result of the E-step of each it-
eration. The updated wsipj

∗ of each iteration in Equation 7
can be determined by Limited-memory BFGS (L-BFGS), an
optimization algorithm in the family of quasi-Newton meth-
ods. Equation 8 is the closed form of standard deviation of
normal distributions.

P (si|u)∗ ∝
∑
p,a

P (si, p|u, a, xua) (5)

P (pj |a)∗ ∝
∑
s,u

P (sj , p|u, a, xua) (6)

w∗sipj∗ ∝ argmax
wsipj

{−
∑
u,a

P (si|u)P (pj |a)·

[
(xua −

∑M
m wsipjmf

ua
m )2

2σ2
sipj

+ log σsipj + log
√

2π]} (7)

similar performance.
3Since Equation 2 is an exponential function, we do a log
transformation in the likelihood function in order to approx-
imate the parameters. Note that there is no loss of infor-
mation in using a log transformation because the log is a
one-to-one function.

σ∗sipj ∝

√∑
ua P (si|u)P (pj |a)(xua −

∑M
m wsjpjmf

ua
m )2∑

ua P (si|u)P (pj |a)
(8)

The EM iterations stop if the max ratio defined below is not
greater than a pre-defined threshold, which is set to 10−3 in
our experiments. For each m in M ,∣∣wsipjm,t − wsipjm,t−1

∣∣ /wsipjm,t < 10−3 (9)

After convergence, the PLC model with the optimal pa-
rameters can predict P (xua|u, a), i.e., the probability of any
target max scroll depth xua of a user/webpage pair. Sec-
tion 3.5 uses this probability to predict the viewability of
any target scroll depth. Similarly, this model can be applied
to recommender systems, as mentioned in Section 1. The
predicted max scroll depth xua reflects the interest of the
user u in the webpage a.

3.5 Viewability Prediction for a Target Scroll
Depth

Given a target scroll depth X and a user/webpage pair,
the trained PLC model computes the probability that the
max scroll depth will be X, i.e., P (xua = X|u, a). As stated
in the problem definition, the goal of this project is to predict
the probability that a given scroll depth will be in view, i.e.,
P (xua ≥ X|u, a). Therefore, we integrate P (xua|u, a) from
X to 100%, as shown in Equation 10. The result is the
probability that the max scroll depth of the page view will
be greater or equal to the target scroll depth X. This means
the max scroll depth xua is at a page percentage no less than
X. The upper bound of the max scroll depth is 100%, i.e.,
the bottom of a page.

P (xua ≥ X|u, a) =

∫ 100%

X

P (xua|u, a)dxua (10)

4. EXPERIMENTAL EVALUATION

4.1 Experiment Datasets
To evaluate the proposed method, we use Forbes’ user

browsing log as described in Section 3. The user log is split
into three sets of training and testing data, as shown in Ta-
ble 2. This was done to avoid bias. The experimental results
are reported by taking the average over the the three sets.
On average, there are 31K+ unique users who generated
300K+ page views in a 10 days training set and 23K+ page
views in a 2 days testing set. We run the experiments on a
computer with Intel Core i7 3.6GHz and 32GB of memory.

Table 2: Training and Test Data Partitioning

Set# Training Data (10d) Testing Data (2d)
1 11/01/2014-11/10/2014 11/11/2014-11/12/2014
2 11/13/2014-11/22/2014 11/23/2014-11/24/2014
3 11/25/2014-12/4/2014 12/5/2014-12/6/2014

4.2 Comparison Systems
We compare the performance of the proposed model (PLC)

with three other system described below: a deterministic
method, a logistic regression (LR) system, and a singular
value decomposition (SVD) system. implement several com-
parison systems. PLC and LR are implemented in Java,
while SVD is built in C++. We use MongoDB to store
pre-processed user logs.



Deterministic Method (DET): We compute the pro-
portion of the page views whose max scroll depths are greater
or equal with the target scroll depth X in each training set.
This proportion is the prediction for all page views given X.
For instance, P (xua ≥ 30%|u, a) is 0.8953 means that the
viewability xua for all test page views is 0.8953. Formally:

P (xua ≥ X|u, a) =
#pageviews whose xua ≥ X

#pageviews

Logistic Regression (LR): We build an LR model based
on the Stanford NLP API. Since one LR model cannot pre-
dict for every given target scroll depth, we train an LR model
for each target scroll depth. We use the same set of input
features as those used to train PLC. The target variable is 1
or 0, i.e., if a page scroll xua is not less than X, then target
variable is 1; otherwise it is 0. When testing, given the fea-
tures vector of a test page view, the LR model outputs the
probability that X is in-view, i.e., P (xua ≥ X|u, a). This
probability can be further converted into a binary decision.

Singular Value Decomposition (SVD): In addition to
dimension reduction, SVD is often used to predict a target
variable based on historical data. For any M ∗N matrix A of
rank r, SVD can decompose it as A = U

∑
V T . U is a M ∗

M orthogonal matrix that spans the “column space”. V is a
N ∗N orthogonal matrix that spans the “row space”.

∑
is a

M ∗N diagonal matrix whose first r entries are the nonzero
singular values of A. Using matrix factorization, SVD maps
both row items (e.g., users) and column items (e.g., pages)
to a joint latent factor space, such that the interactions of
row items and column items are modeled as inner products
in that space. In our case, it generates a vector to represent
each user or page. The dot product of a user vector and a
webpage vector is the prediction of their interaction. Unlike
PLC, SVD does not utilize the distribution of max scroll
depth and the explicit features of page views.

Our SVD model implementation is based on libFM [19].
The number of factors is set to 8, as suggested in the manual.
The matrix A is a user-webpage matrix. Each cell value is
either 1 or 0, i.e., whether X is in-view or not. The output
for a page view is a value between 0 and 1, which is treated
as the probability that X is in-view. This probability can
be converted into a binary decision. Similar to LR, we build
an SVD model for each X.

4.3 Metrics
The main metrics we adopt are the Root-Mean-Square

Deviation (RMSD) and the F1-score of class 0 (i.e., given
scroll depth not in-view) and class 1 (i.e., given scroll depth
in-view). We also compare the methods using the precision
and recall metrics.

RMSD: The RMSD measures the differences between the
values predicted by a model, ŷi, and the values actually
observed, yi. It is widely used in various research fields and
is defined as the square root of the mean square error:

RMSD =

√∑N
i=1(ŷi − yi)2

N

where N is the number of test page views. yi is the ground
truth of the ith page view. If the target scroll depth X is
in-view, yi = 1; otherwise, yi = 0. ŷi is the probabilistic pre-
diction of the ith page view, i.e., ŷi ∈ [0, 1]. RMSD serves
to aggregate the magnitudes of the errors in predictions for
various times into a single measure of the predictive power

of a method. Thus, the lower RMSD is, the better the pre-
diction performance.

Precision, Recall and F1-score: The probability that
X is in-view can be converted to 0 or 1, i.e., if it is greater
or equal than 0.5, then X is in-view; otherwise, X is not
in-view. Thus, the probabilistic prediction problem can be
considered a binary classification problem as well. Hence,
precision, recall, and F1-score can be used to compare the
models. The precision of a class is the number of page views
correctly labelled as belonging to the class divided by the
total number of page views labelled as belonging to the class.
High precision means high true positive rate and low false
positive rate. The recall of a class is the number of page
views correctly labelled as belonging to the class divided by
the total number of page views that belong to the class. High
recall means high true positive rate and low false negative
rate. The F1-score of a class is the harmonic mean of the
precision and recall of the corresponding class.

4.4 Effect of Parameter Combination
We investigate the performance of PLC with different

combinations of the two parameters, Ns and Np, shown in
Equation 1. Ns is the number of latent user classes, while
Np is the number of latent webpage classes. Since there is
an ad slot located at the 60% page depth on the real web-
pages analyzed, we take 60% as the target scroll depth X.
We adopt grid search and random search to find the opti-
mal parameters. For grid search, we try all combinations of
Ns ∈ [2, 12] and Np ∈ [2, 12]. For random search, we try 20
combinations of Ns ∈ [2, 30] and Ns ∈ [2, 30] which are not
included in the grid search. The range of obtained RMSDs
is [0.3637, 0.3683].

Table 3: RMSDs of Different Parameter Pairs

RMSD Np=4 Np=5 Np=6 Np=7 Np=8 Np=9
Ns=4 0.3681 0.3672 0.3678 0.3678 0.3676 0.3659
Ns=5 0.3671 0.3691 0.3678 0.3686 0.3675 0.3663
Ns=6 0.3679 0.3676 0.3678 0.3679 0.3671 0.3659
Ns=7 0.3674 0.3679 0.3672 0.3672 0.3645 0.3656
Ns=8 0.3675 0.3678 0.3663 0.3640 0.3672 0.3660
Ns=9 0.3678 0.3671 0.3652 0.3652 0.3638 0.3663
Ns=10 0.3671 0.3673 0.3649 0.3639 0.3644 0.3646
Ns=11 0.3657 0.3644 0.3637 0.3631 0.3638 0.3643
Ns=12 0.3640 0.3637 0.3634 0.3636 0.3645 0.3644

Table 3 shows the 5-fold cross validation RMSD results for
different Ns and Np combinations. For the sake of brevity,
we only present partial results which contain the best and
the worst performance. We observe that different combi-
nations do not largely influence the performance, with the
difference between the best and the worst results being only
0.006. Most parameter combinations generate similar values
for precision, recall, and F1-score, respectively.

4.5 RMSD Comparison
The goal of this experiment is to test the performance of

the models with different target scroll depths. Since gener-
ally the top 10% of a page can be shown in the first screen
without the user performing any scrolling, we set the range
of the target scroll depth to the interval [0.1, 1].

Figure 8 plots the RMSD comparison for the four sys-
tems. The results show that PLC significantly outperforms
the three comparison systems. The RMSD performance of
PLC at all Xs is averagely 10%, and 17% at maximum,



Figure 8: RMSD Performance

better than the second best system, SVD. All models have
better performance near the top and bottom of a webpage
than in the middle. The reasons for the top of the pages
is that most pages are in-view at scroll depths such as [0.1,
0.2]. Being trained by such skewed data, most probabilistic
outputs of the models are closer to 0 than 1. Although they
may commit mistakes on the cases that are not in-view, the
average RMSDs are still relatively low.

The prediction becomes harder with X moving toward the
middle of the pages. Intuitively, the models are more prone
to making incorrect predictions. Thus, RMSDs in this inter-
val are higher than those in the two tails. Nevertheless, PLC
performs substantially better than the other systems within
this challenging interval. Due to the difficulty of capturing
all the significant features, logistic regression does not per-
form as well as SVD and PLC, which identify latent features
or latent classes, respectively.

Although RMSD reflects the deviation between proba-
bilistic prediction and ground truth, it cannot tell the whole
story of the performance. For example, let us assume there
are 100 page views. Given a certain X, the ground truth
tells that 99 belong to the not-in-view class and one belongs
to the in-view class. A naive model makes the same predic-
tion, which is 0, all the time. Thus, RMSD for this naive
model at X is 0.1, which looks decent. However, such a good
RMSD hides the inability of the model to recognize in-view
instances. To overcome this issue, we adopt precision, recall,
and F1-score to further evaluate our model.

4.6 Precision, Recall, and F1-score Compari-
son

Avoiding both false positives and false negatives can im-
prove investment effectiveness for advertisers and increase
the ad revenue for publishers. Therefore, identifying both
in-view and not in-view impressions is equally important.
Two practical examples illustrate this goal: (1) since the
viewability of the page bottoms tends to be low, it is im-
portant to recognize when the page bottoms are actually in-
view; (2) relatively high viewability of the page tops leads
to expectations that ads at top are always in-view; however,
this is not always the case, and it is very helpful to identify
those pages whose tops are not in-view.

Figure 9 shows the precision, recall, and F1 score of both
class 0 and 1 (i.e., not in-view and in-view). Overall, PLC
performs the best among the four systems. The performance
for class 1 is high when X is set in the interval [0.1, 0.6]
because the top of most pages are in-view. Although it is
more challenging to recognize the page views whose top is
not in-view, PLC classifies these page views the best because

its precision and recall for class 0 in the interval [0.1, 0.6] are
the highest. Likewise, although it is difficult to detect the
page views whose bottoms are in-view, PLC has the highest
precision and recall for class 1 within [0.6, 1].

PLC has relatively low recall for class 1 in the interval
[0.3 0.6] because it tends to boldly classify more page views
to class 0 than the other systems. Most of these predictions
are correct, (i.e., true negatives), while just a few are wrong
(i.e., false negatives). The correct predictions increase the
precision and recall for class 0, but the wrong predictions in-
evitably decrease the recall for class 1 since fewer page views
are classified into class 1. This also explains why PLC’s pre-
cision for class 1 is the highest in the interval [0.3, 0.6]. In the
interval [0.6, 1], these observations are even more apparent.
At the cost of sacrificing the recall for class 0, PLC achieves
decent performance on the precision for both classes as well
as the recall for class 1.

The differences among the models in Figure 9 are not as
substantial as those in Figure 8 because RMSD is a more
sensitive metric. For instance, given a page view whose X is
in-view according to the ground truth, the probabilistic pre-
diction of PLC is 0.8, while that of LR is 0.6. Both methods
have the same evaluation results on the classification metrics
because the outputs are greater than 0.5. But their perfor-
mance can be distinguished when looking at RMSD: PLC’s
RMSD is 0.2, while LR’s is 0.4.

LR, SVD, and PLC do not have precision results for class
1 in the interval [0.9, 1] because no page view is classified
into class 1. Thus, a precision value cannot be calculated
because the number of page views labeled in class 1 acts as
the denominator in the precision formula and is 0 in this
case. For the same reason, the recall for class 1 is 0 in this
interval and no F1-score for class 1 can be computed for
this interval. A similar behavior happens for class 0 in the
interval [0.1, 0.2].

The reason that no page view is classified into class 1
within [0.9, 1] is that the distributions of the two classes are
very skewed in the interval. Particularly, a large majority of
page views are not in-view. Such imbalanced data precludes
statistical methods like ours to work appropriately [11]. Es-
sentially, the classifiers cannot learn well from the skewed
data because the training examples are scarce. To overcome
this issue, we have tried simple under/over-sampling. But
inevitably, the precision has largely decreased. Therefore,
mitigating data imbalance remains a task for future work.

Note that DET is not impacted by imbalanced data be-
cause it always makes the same decision for all test page
views given an X. It works as well as the other methods in
the interval [0.1, 0.2] and [0.9, 1]. Since DET is much simpler
and faster, a practical suggestion on viewability prediction is
to use DET to predict the viewability of scroll depths in [0.1,
0.2] and [0.9, 1] intervals, while PLC should be employed to
predict in [0.2, 0.8] interval.

4.7 Runtime Comparison
Figure 10 shows the runtime comparison for PLC, LR, and

SVD. In this experiment, we build one PLC model to predict
the viewability of all target scroll depths from 10% to 100%.
(step = 5%, so 19 scroll depths). However, for LR and SVD,
we build 19 models (the step is 5% for the interval 10% to
100%). Therefore, the time for PLC includes one training,
while the time for LR and SVD is the sum of 19 trainings.
We do not include DET because it does not involve training
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Figure 9: Classification Performance Comparison
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Figure 10: Runtime Comparison

and makes consistent predictions for all page views for a
given X (i.e.. its training and testing runtime are almost 0).

The results show that the training time of LR is much
lower than those of PLC and SVD because LR does not
have to learn any latent patterns from data. Intuitively,
learning and applying more latent user classes and webpage
classes takes more time. Since PLC performs better in terms
of prediction accuracy, its training time is reasonable, espe-
cially compared to SVD. Let us also note that training can
be done offline.

The results also show that PLC needs more time to make
a prediction. However, the absolute value is very low (i.e.,
0.012 ms). As an exchange-sold ad is often sold in 200 mil-
liseconds, the PLC prediction time can easily be afforded for
real-time predictions of incoming pages.

4.8 PLC Performance on Different Training
Data Sizes

Table 4: Dataset Partitions with Different Sizes

Training Data Testing Data (2d)
11/10/2014 (1d)

11/11/2014-11/12/2014
11/01/2014-11/10/2014 (10d)
10/22/2014-11/10/2014 (20d)
10/12/2014-11/10/2014 (30d)

To test the impact of different training data sizes on PLC’s
performance, we re-partition the dataset by fixing the test-

ing dates and varying the training data sizes, as shown in Ta-
ble 4. All models share the common parameter pair, Ns = 11
and Np = 7 According to Figure 11, the PLC results are
almost the same for F1 scores. However, the results are dis-
tinguishable for RMSD, as this is a more sensitive metric.
RMSD for PLC(30d) is slightly worse than the others. A
possible reason is that the user interest may change over
time a longer period of time and subsequently hurt the pre-
diction performance. The performance of PLC(1d) is not as
good as those of PLC(10d) and PLC(20d) because it utilizes
much less user and webpage history. Generally, PLC(10d)
and PLC(20d) have very similar performance. The former
should be preferred in practice because less data are required
for training.
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6. CONCLUSIONS
To the best of our knowledge, this paper is the first to

study the problem of predicting the viewability probability
for a given scroll depth and a user/webpage pair. Solving
this issue is of great value to online advertisers and pub-
lishers because it will allow them to invest more effectively
in advertising and increase their revenue, respectively. We
presented PLC, a probabilistic latent class model, that is
trained only once to predict the viewability for any given
scroll depth. The model includes a number of features iden-
tified from our analysis of a dataset from a large online pub-
lisher to have an impact on the maximum scroll depth, such
as user geo-location and device type. The experimental re-
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Figure 11: Performance Comparison of Different Training Data Sizes

sults show that PLC has higher prediction accuracy than
three system used for comparison. The results also demon-
strate that PLC can be used in real-time and works well for
different training datasets.

In the future work, we plan to work on collecting data
about webpage content, investigating its effect on viewa-
bility, and incorporating that information in our model for
viewability prediction. We will continue improving the pro-
posed model to handle unbalanced data.
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